If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+17=8
We move all terms to the left:
2x^2-20x+17-(8)=0
We add all the numbers together, and all the variables
2x^2-20x+9=0
a = 2; b = -20; c = +9;
Δ = b2-4ac
Δ = -202-4·2·9
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{82}}{2*2}=\frac{20-2\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{82}}{2*2}=\frac{20+2\sqrt{82}}{4} $
| 44=x+40 | | 43-2x=30 | | y(4)+6y(3)+17y(2)+22y(1)+14y=0 | | 5(2x-3)+7=2 | | 180=(x)(x) | | -5+4k=27 | | -3+2k=11 | | s*4-40=64 | | Y=4x4-3x2+2 | | -6/5-2/3v+4/15=1/3v | | -13.9-8v=1.1 | | 7^0.3x=755 | | -9n=50 | | 150+1.3x=5x | | A/3=1.5/y7 | | 49x-196=1323 | | 58x+580=116 | | 51/k=17 | | s/7=16 | | 1/500=25/x | | 2.1/x=7/5 | | 4.5/2.7=6.6/x | | 6x/8=30-(8+16) | | x/4=5+2 | | 3x-2(4+x)=6-x | | 3x-2(4+x)=6-1 | | 2(x+2=-2(x-3) | | 2(x-2=-2(x-3) | | 15x-12=13x+50 | | -14=-7/12x | | 1/2z+-1=1/2 | | -(m+4)=-2m-6 |